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Abstract. The ground-state energy of excitons confined in microspherical crystallites with
a finite-height potential wall is studied variationally as a function of the particle radius in
the so-called strong-confinement regime. Exciton energies for dot radii in the range 5–40Å
are calculated and compared with experimental and theoretical data for CdS, CdSe, PbS and
CdTe crystallites. This comparison shows that the effective-mass approximation and spherical
confinement geometries are appropriate for all of the particle sizes. Our results also show that
the quantum dot cannot be modelled using an infinite-barrier-height potential in the strong-
confinement regime.

1. Introduction

The study of quantum-size effects for semiconductor microcrystals has become a subject
of interest due to the effect of confinement on Wannier excitonic state: it produces
important changes in the optical properties of microcrystallites as compared to those of
the corresponding bulk material (Brus 1986a, b, Wang and Herron 1991, Yamamotoet al
1991, Morganet al 1990).

There have been several theoretical efforts to account for the size dependence of the
energy levels of excitons confined by small spherical quantum dots (Brus 1983, Schmidt
and Weller 1986, Welleret al 1986, Nair et al 1987, Wanget al 1987). There are
two limiting cases, depending upon the ratio between the radius of the quantum dotr0
and the effective Bohr radius of the bulk excitona. For r0/a � 1 the exciton can be
envisioned as a quasiparticle moving around inside the quantum dot with only little energy
increment due to confinement; in this case, the infinite-potential-well model (within the
single-band effective-mass approximation (EMA)) gives a reasonable description of the
experimentally observed shift in the exciton ground-state energy. The latter is also true for
other treatments such as that based on the effective-bond-orbital model (EBOM) (Einevoll
1992), the tight-binding (TB) approach (Lippens and Lannoo 1989, 1990) and the semi-
empirical pseudopotential method (SEPM) (Wang and Zunger 1996). In the opposite limit,
r0/a � 1, the confinement effect dominates and the electron and hole should be viewed as
individual particles predominantly in their respective single-particle ground states with only
little spatial correlation between them. In this regime (called the strong-confinement regime),
the exciton in the quantum dot ‘feels’ the boundary effects strongly, and the inclusion of
a finite height for the confining potential barrier has become an important requirement in
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order to account for recent experiments on the optical properties of small crystallites (Wang
and Herron 1991, 1990). This has been confirmed recently by our calculations and other
work (Kayanuma 1990, Einevoll 1992).

The aim of this work is to show that a recently developed strategy using the direct
variational method, which is remarkably simple and particularly useful for the treatment of
confined quantum systems (Marı́n and Cruz 1992), provides reasonable answers in the study
of real systems. To this end, we analyse the effect of confinement on the ground-state energy
of an electron–hole pair trapped in a microspherical crystallite with finite-barrier potential
walls by imposing appropriate boundary conditions. Our results are compared with those
obtained from previous, more sophisticated theoretical calculations and recent experiments
on CdTe, CdSe, PbS and CdS crystallites embedded in different host materials. A critical
size of the crystallite below which the exciton deconfines is predicted, in contrast to the
case for the above-mentioned theoretical approaches in which this limit does not exist.

The following assumptions are made in our treatment: (i) the EMA in the single-band
scheme (parabolic with zero spin splitting) is valid for all particle sizes; (ii) surface and
image potential effects can be neglected; (iii) the lattice reconstruction is different from that
for the bulk material; and (iv) the quantum dots have an approximate spherical shape for
all sizes, keeping the same dielectric constant as their corresponding bulk material.

Although the above hypotheses are known to be too crude for the smaller crystallite sizes
(Brus 1986a, b, 1984), we believe that the physical information provided by this treatment
should be independent of a more detailed account of the features mentioned above, being
correct for real structures. Comparison of the results of this work with those of a set of recent
experiments on CdS (Wang and Herron 1990), CdTe (Ramı́rez et al 1995), PbS (Wang and
Herron 1991) and CdSe (Wang and Zunger 1996) crystallites embedded in different materials
clearly points to the need to go beyond the EMA and spherical confinement to account for
the exciton energies observed for the smallest particle sizes.

2. The model and applied theory

In the EMA, the model Hamiltonian for the system of interest is (taking ¯h = e = 1)

Ĥ = − 1

2me
∇2
e −

1

2mh
∇2
h −

1

ε|re − rh| + Ve + Vh (1)

where ε stands for the dielectric constant,me (mh) is the electron (hole) effective mass
relative to the free-electron mass,re (rh) is the electron (hole) position relative to the
centre of the sphere andVe (Vh) is the barrier height of the confining potential for the
electron (hole). Assuming the same barrier (V0) for electrons and holes,

Ve = Vh =
{

0 06 re, rh 6 r0
V0 r0 6 re, rh <∞

(2)

wherer0 is the radius of the sphere. Physically,V0 in this context simulates the average
effective potential step created by the difference in composition between the crystallite and
the host material.

Note that the structure of (1) is similar to that for the helium atom except that the
electron–electron repulsion term is replaced by the attractive electron–hole interaction and
the nuclear charge term (Z) becomes zero in this case. Hence, in contrast with previous
variational calculations related to this problem (Nairet al 1987, Kayanuma 1990, 1988),
here the strategy used in the treatment of the confined helium atom is followed, i.e. the
wavefunctionansatz for the exciton is constructed as a product of two 1s hydrogenic
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functions, as was described previously (Marı́n and Cruz 1992). Accordingly, the ground-
state wavefunction in the interior region(06 re, rh 6 r0) is defined as

ψi = A exp[−α(re + rh)] (r0− αrh)(r0− αrh) (3)

while for the exterior region (r0 6 re, rh <∞)
ψo = B(rerh)−1 exp[−β(re + rh)] (4)

whereα andβ are variational parameters to be determined after minimization of the total
energy, with additional constraints, imposed by the following boundary condition:

1

m∗i

1

ψi

∂ψi

∂rs

∣∣∣∣
rs=r0
= 1

m∗o

1

ψo

∂ψo

∂rs

∣∣∣∣
rs=r0

(5)

where the subscripts is generic, standing for either electron or hole, andm∗i and m∗o
correspond to the reduced effective mass of the exciton inside and outside the quantum dot
(QD). In the above equation we have introduced a relation between the effective masses
as a criterion for differentiating between the excitons in the two regions where, indeed,
there are different materials (Trallero-Giner and Lopez-Gondar 1985). Note also that this
boundary condition is not the same as the usual one in the sense that, in the latter, the
electron is assumed to have the same mass in both regions (inside and outside the well),
an assumption which does not strictly hold true in the present case. Furthermore, as the
electron is deconfined before the hole, we can consider that, as a reasonable approximation,
the variation of the exciton reduced mass is mainly due to the change in the electron effective
mass, while the hole effective mass remains the same. Equation (5) connectsα andβ as
follows:

β = q [αr0(1− α)+ α] + α − 1

r0(1− α) (6)

with q = m∗o/m∗i .
Hence we only need to determine one of the variational parameters. The constantsA

andB can be determined through the normalization condition

〈ψi |ψi〉 + 〈ψo|ψo〉 = 1 (7)

and the continuity of the wavefunctionψi = ψo at r = r0.
The expectation value ofĤ (or the corresponding energy functionalE) can be

constructed using equations (1)–(7) (see the appendix) and the parameterα (or β) can
be found through the minimization ofE in the standard fashion, i.e.

∂E

∂α
= 0 or

∂E

∂β
= 0. (8)

In the present work the expression for the energy functional was found analytically and
its minimization was carried out numerically with a precision of the order of 10−4. As the
reader must be aware, the procedure followed to perform the calculations is quite simple.
Indeed, it takes only a few minutes to construct a given curve of the exciton ground-state
energy as a function of the crystallite size.

3. Discussion of the results

Figure 1 shows the experimental values and theoretical predictions for the exciton ground-
state energy in CdS crystallites of various sizes, embedded in an organic material (circles)
(Wang and Herron 1990) as well as in silicate glass (triangles) (Ekimovet al 1985).
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Figure 1. Energies for excitons in CdS crystallites as functions of their sizes. The symbols
represent the experimental data for crystallites embedded in different materials: organic material
(circles) and silicate glass (triangles). The continuous curves correspond to the EBOM
calculations while the dashed ones correspond to the variational results of the present work.
The curve labelled ‘T.B.’ corresponds to the results of the tight-binding calculations. The band
gap for CdS has been subtracted from the confined exciton energy.

The solid lines represent the theoretical prediction made by Einevoll (1992) who carried
out an analysis of exciton confinement in CdS quantum dots, based on the effective-
bond-orbital model (EBOM) for the hole and the effective-mass approximation (EMA)
for the electron with a finite-barrier-height potential. The higher curve corresponds to
Ve = Vh = V0 = 2.25 eV and the lower one to 0.50 eV. The dashed line, labelled ‘T.B.’,
represents theoretical predictions made by Lippens and Lannoo (1989, 1990) who carried out
an analysis of exciton confinement in CdS quantum dots based on the tight-binding method
assuming an infinite-barrier-height potential model. The other dashed lines represent our
theoretical prediction based on the effective-mass approximation model in the single-band
scheme and the variational method. The higher curve corresponds toV0 = 2.50 eV and
mo/mi = 1 and the lower curve to 0.475 eV andmo/mi = 1.0. In all cases the results
were evaluated for the same CdS material parameters (Lippens and Lannoo 1989, 1990)
(me = 0.18mo, mh = 0.53mo andε = 5.5, mo = free-electron mass) and the gap energy in
the bulk materialEg = 2.5 eV (Lippens and Lannoo 1989, 1990) has been subtracted from
the total exciton energy (Eex); i.e. E0 = Eex − Eg. The analysis of this figure shows the
following.

(i) The same quantum dots embedded in different materials show different experimental
values of the exciton ground-state energy, demonstrating that the exciton energy in the
quantum dot depends upon the exterior medium in which it is synthesized.

(ii) In the strong-confinement regime no model based on infinite-height potential barriers
can give a reasonable description of the experimentally observed shift in the exciton ground-
state energy as a function of the quantum dot size. This indicates that the assumption of
a finite barrier height and the introduction of the effective mass in the boundary condition
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would be essential to achieve a good agreement between theory and experiment.
(iii) Our EMA-based variational method gives similar results to the EBOM calculation

which requires a more elaborate treatment. In addition, an important qualitative feature
appears in the present calculations: a difference in the slope of the energy curve for small
particle radius as compared with the EBOM calculation.

The onset for the vanishing of the well states is clearly present in the results of this work; that
is, given a barrier height, there exists a critical particle radius (whenE0 = Ve = Vh = V0)

below which the exciton is no longer confined. The latter is more evident in the lower curve
in figure 1 (V0 = 0.475 eV). Physically, the slope of the curve should be related to the
confining force. In this case, we observe a decrease in the slope at aboutr0 6 12 Å, which
could correspond to the particle radius for which the electron is first deconfined, while the
hole (due to its larger mass) is still confined. For particle radiusr0 ≈ 6 Å (E0 = 0.95 eV),
the slope becomes zero, indicating complete deconfinement of the exciton. The same can
be said for the rest of the curves. We believe that this qualitative effect should be present
in any calculation.

Figure 2. Energies for excitons in CdS crystallites as functions of their sizes. The symbols
represent the experimental data for crystallites embedded in different materials: organic material
(circles) and silicate glass (triangles). The curves correspond to the variational results of the
present work, for different relations between the effective mass inside and outside the crystallite.
The band gap for CdS has been subtracted from the confined exciton energy.

In figure 2 we compare the same experimental data for CdS as are presented in figure 1
with our theoretical results for two confining potentials of the electron and hole (which have
been considered equal:Ve = Vh = V0). We plot the exciton energy forV0 = 7.5 eV (higher
curves),V0 = 0.5 eV (lower curves) and three different values ofmo/mi (0.8, 1.0, 1.2)
for each value of the confining potential (in the same order as is indicated in the figure).
The experimental data (indicated as triangles) correspond to CdS crystallites in silicate glass
(Ekimov et al 1985) which have a gap energy of 7 eV in the barrier, as has been roughly
estimated for this material by Kayanuma (1990) and Einevoll (1992). The experimental
data indicated as circles (Wang and Herron 1990) correspond to lower barrier heights of
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CdS crystallites embedded in an organic material. Note however that, since the crystallites
were fabricated by two different techniques, their spherical shapes and the values ofV0

andmi can change due to the inhomogeneity of the media. On the other hand, note that
the experimental data indicated as triangles in figures 1 and 2 are same, but the curves
corresponding to two different finite barrier heights in our results give a good agreement
between theory and experiment, which is due to the fact that the gap energy of the silicate
glass is very large, but finite. This is not the case for the experimental data indicated as
circles where the barrier height potential is smaller, and they are more sensitive to the value
chosen forV0, as is corroborated when we useV0 = 0.475 (circles in figure 1) andV0 = 0.5
(circles in figure 2).

Figure 3. Energies for excitons in CdSe crystallites as functions of their sizes. Squares represent
the experimental data while filled circles correspond to the pseudopotential calculation. The
curves correspond to the variational results of the present work.

In figure 3 we show (filled circles) the theoretical predictions given by Wang and
Zunger (1996) which are based on a plane-wave semi-empirical pseudopotential method
(SEPM), with non-local potentials and spin–orbit coupling in a CdSe quantum dot. Wang
and Zunger have also used a size-dependent dielectric constant in the Coulomb interaction
energy. We also show (squares) the experimental data from Wang and Zunger (1996) and
our theoretical results based on the EMA with the finite barrier heightV0 = 1.3 eV and
different values ofmo/mi = 0.8, 1.0 and 1.2. The calculations were performed with the
parametersme = 0.13mo, mh = 0.4mo, ε = 10.6. From this figure we can reach the
following conclusions.

(i) Correction of the Coulomb interaction energy with a size-dependent dielectric
constant is not sufficient to produce good agreement between experimental data and
theoretical results for an exciton confined in the strong-confinement regime since the
external medium in which the crystallite is embedded should be considered via a finite-
height potential barrier and different effective masses (inside and outside the QD). The
dielectric constant of the quantum dotεdot (∞) is only different from the bulk dielectric
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constantεbulk(∞) for CdSe forr0 < 20 Å, where decreases for small values ofr0 make
the exciton energy smaller and the contribution (with a finite-height potential) is also too
small to lead to a good agreement between the experimental data and the theoretical curve.
The dielectric constant correction to the QD size with the infinite-potential model would not
explain the experimental data in figure 1; for example, the TB calculation of Lippens and
Lannoo (1989, 1990) with an infinite potential barrier only describes the experimental data
represented by circles, but never the experimental data represented by triangles. Moreover,
the theoretical curves based on infinite barriers always diverge whenr0 → 0, but they
converge when finite barriers are assumed.

(ii) The spin–orbit splitting in the valence-band structures is not very sensitive to the
calculation of the ground-state energy of the exciton (see figure 5 of Lippens and Lannoo
1989, 1990).

(iii) The introduction of the effective mass in equation (5) would represent another
variable which could take into account the exterior medium in which the crystallites are
embedded.

(iv) If, in the effective-mass approximation with a finite-barrier-height potential, we
include the size-dependent dielectric constant in the screening of the Coulomb interaction
energy, we will obtain more accurate results for the exciton energy over this very small size
range. Moreover, in the latter case, the theoretical curves would converge whenr0→ 0.

Figure 4 shows the dependence of the optical band gap (the exciton energy) of PbS
clusters (taken from Wang and Herron 1991) on the cluster size. The uppermost line
represents an empirical EMA-based calculation (Wang and Herron 1991); this estimation
contains only the basic physics of the quantum-size effects and it cannot be expected to be
quantitatively correct in the strong-confinement regime, as has been shown by experimental

Figure 4. The band gap for a PbS cluster. The uppermost curve corresponds to the empirical
EMA-based calculation, squares correspond to experimental data, filled circles correspond to the
cluster tight-binding calculation, the dashed line corresponds to the hyperbolic band calculation
and the solid curve represents the variational results of the present work.
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studies and is indicated by its empirical character. Squares represent the experimental data,
black circles represent the results of a cluster tight-binding calculation, the dashed curve
represents the result of a hyperbolic band model calculation by Wanget al (1987) and the
solid curve represents our results forV0 = 1.3 eV andmo/mi = 1 (withme = mh = 0.1mo,
ε = 170). As can be noticed, all of the theoretical methods based on the consideration
of an infinite-barrier-height potential show a divergence with respect to the experimental
data in the strong-confinement regime, but our results show a good agreement with the
experimental data.

Figure 5. The absorption edge for a CdTe crystallite. Squares and circles (filled and hollow)
represent the experimental data for crystallites prepared by the thermal annealing of CdTe:O
with different oxygen concentrations. The curves correspond to the variational results of this
work.

In figure 5 we show the experimental values for the absorption edge in CdTe crystallites
of various sizes prepared by thermally annealing in an Ar flux the a-CdTe:O films deposited
by rf sputtering obtained by Ramı́rez et al (1995). The different symbols correspond to
three samples of a-CdTe:O annealed with different oxygen concentrations. The sizes of
these quantum dots are in the weak-confinement regime; in this case, all of the methods
based on infinite barriers potential give the same results. The dashed line corresponds to
V0 = 10 eV, which represents a big barrier potential, and the solid line corresponds to
V0 = 1.0 eV . The authors report a gap of 4.0 eV for CdTeO3, obtaining an actual barrier
potential of 1.25 eV per particle; as can be observed, there is only a small difference, which
can be considered negligible for the two curves and the three samples. In this case the
excitons do not ‘feel’ the boundary and the tunnelling probability is very small. For this
material we have usedme = 0.11mo, mh = 0.35mo, ε = 10.9.

Finally, we have calculated the ground-state energy of an exciton confined in a spherical
quantum dot using the effective-mass approximation with a finite-barrier-height potential in
the single-band scheme as a function of the QD radius, applying the variational method,
and we find a good agreement when we compare with different experimental data and other
sophisticated theoretical methods which require more complex computational calculations.
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We have also demonstrated that in the strong-confinement regime the QD cannot be modelled
with an infinite-barrier potential, and that the introduction of the effective-mass relation
between the electron and hole inside and outside of the QD allows a more accurate estimation
of the ground-state exciton energy. Other models in which a finite barrier is not considered
cannot explain the experimental data since the exciton energy→ ∞ as r0 → 0. Better
theoretical results would be achieved if we incorporated a size-dependent dielectric constant
and non-spherical confinement geometry. Further work is necessary to incorporate these
features in the model in order to make final assessments of the usefulness and power of the
simple variational approach used in this study.

Work is progress on this subject, and will be published in due course.
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Appendix. Construction of the energy functional

In the following we will describe, step by step, how one can construct the energy functional
for an exciton which is confined within a spherical quantum dot in the framework of the
effective-mass approximation and the variational method, as proposed in the present work.

A1. Normalization

The trial wavefunction, equations (3) and (4), can be normalized according to∫
�i

|ψi |2 dτe dτh +
∫
�o

|ψo|2 dτe dτh = 1 (A1)

where �i (�o) is the volume inside (outside) the quantum dot and dτe (dτh) is the
corresponding volume element. The wavefunction, equations (3) and (4), can be rewritten
as follows:

ψi = Aϕi(re)χi(rh) 06 re, rh 6 r0 (A2a)

and

ψo = Aϕo(re)χo(rh) r0 6 re, rh <∞ (A2b)

whereϕi (or χi) has the structure

ϕi(u) = exp(−αu)(r0− αu)
and, correspondingly,ϕo (or χo) can be written as

ϕo(u) = e−βu

u
.

The normalization condition given by equation (A1) can then be written as

A2
∫
|ϕi(re)|2|χi(rh)|2 dτe dτh + B2

∫
|ϕo(re)|2|χo(rh)|2 dτe dτh = 1 (A3)

but ∫
�i

|ϕi(re)|2 dτe =
∫
�i

|χi(rh)|2 dτh
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and ∫
�o

|ϕo(re)|2 dτe +
∫
�o

|χo(rh)|2 dτh.

Since the kernel functions in the integrals have the same structure, we have that

A2I 2
Ni
+ B2I 2

No
= 1

with

INi ≡
∫
�i

|ϕi(re)|2 dτe =
∫
�i

|χi(rh)|2 dτh ≡ 2π
∫ r0

0
e−2αu(r0− αu)2u2 du (A4)

and

INo ≡
∫
�o

|ϕo(re)|2 dτe =
∫
�o

|χo(rh)|2 dτh ≡ 2π
∫ r0

0
e−2βu du = π

β
e−2βr0. (A5)

Moreover, the continuity of the wavefunction atre, rh = r0 leads to

Ae−2αr0r2
0(1− α)2 = B

e−2βr0

r2
0

or

B = Ae−(2α−2β)r0r4
0(1− α)2.

The latter allows us to write the normalization constantA as

A = [I 2
Ni
+ I 2

No
f
]−1/2

(A6)

where

f ≡ e−(4α−4β)r0r8
0(1− α)4.

A2. Kinetic energy

The form of the wavefunction as given in equations (A2) allows us to write

∇2
e ψi = Aχi(rh)∇2

e ϕi(re)

∇2
hψi = Aϕi(re)∇2

hχi(rh).

Then the kinetic energy for the exciton inside the quantum dot is given as

K̄i = − 1

2me

∫
�i

ψ∗i ∇2
e ψi dτe dτh − 1

2mh

∫
�i

ψ∗i ∇2
hψi dτe dτh

or

K̄i = − A2

2me

∫
�i

|χi(rh)|2 dτh

∫
�i

ϕ∗i (re)∇2
e ϕi(re) dτe

− A2

2mh

∫
�i

|ϕi(re)|2 dτe

∫
�i

χ∗i (rh)∇2
hχi(rh) dτh

but, as we have pointed out before,∫
�i

|ϕi(re)|2 dτe =
∫
�i

|χi(rh)|2 dτh = INi
and hence

K̄i = − A2

2me
INi Iki −

A2

2mh
INi Iki = −

A2

2µ
INi Iki (A7)
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where
1

µ
= 1

me
+ 1

mh

andµ is the reduced mass of the exciton and

Iki ≡ 2π
∫ r0

0
e−αu(r0− αu)

{(
d2

du2
+ 2

u

d

du

)
e−αu(r0− αu)

}
u2 du.

Accordingly, the kinetic energy for the exciton outside is given as

K̄o = −B
2

2µ
INoIko = −

A2f

2µ
INoIko

whereINo , f were defined earlier and

Iko ≡ 2π
∫ ∞
ro

e−βu

u

{(
d2

du2
+ 2

u

d

du

)
e−βu

u

}
u2 du.

A3. Potential energy

The expectation value ofVc = Ve + Vh can be written as

V̄c =
∫
�o

ψ∗o Vcψe dτe dτh =
∫
�o

ψ∗o (Ve + Vh)ψo dτe dτh

= (Ve + Vh)B2
∫
�o

|ϕo(re)|2 dτe

∫
�o

|χo(rh)|2 dτh

or

V̄c = (Ve + Vh)B2I 2
No
= (Ve + Vh)A2f I 2

No
.

The term for the electron–hole interaction can be expanded in spherical harmonics as

1

|re − rh| = 4π
∞∑
l=0

l∑
m=−l

1

(2l + 1)

rl<

rl+1
>

Ym
∗

l (θe, φe)Y
m
l (θh, φh)

wherer< (r>) is the smaller (greater) ofre andrh.
With this expansion, the expectation value for the electron–hole interaction can be

written as

V̄eh = −
∫
�i

ψ∗i
1

|re − rh|ψi dτe dτh

= 4πA2
∞∑
l=0

l∑
m=−l

1

(2l + 1)

∫
�i

rl<

rl+1
>

|ϕi(re)|2|ψi(rh)|2

× Ym∗l (θe, φe)Y
m
l (θh, φh)r

2
e r

2
h d�e d�h dre drh

where d�e (d�h) denotes the solid angle for the electron (hole).
As ϕi (or χi) does not depend on the angles(θe, φe) (or (θh, φh)),∫

Ym
∗

l (θe, φe) d�e =
√

4π
∫
Ym

∗
l (θe, φe)Y

0
0 (θe, φe) d�e =

√
4πδl0δm0

and ∫
Ym

∗
l (θh, φh) d�h =

√
4π
∫
Y 0∗

0 (θh, φh)Y
m
l (θh, φh) d�h =

√
4πδl0δm0.
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Thus,

V̄eh = −4πA2
∫
�i

rl<

rl+1
>

e−2αree−2αrh(r0− αre)2(r0− αrh)2r2
e r

2
h dre drh

and the singularity atre = rh can then be removed in the usual way, leading to (for instance,
if we integraterh from 0 to re (r> = re and r< = rh) and then fromre to r0 (r> = rh and
r< = re))

V̄eh = −(4π)2A2

{∫ r0

0
e−2αre {F(α, re)+G(α, re, r0)}

}
r2
e dre

with

F(α, re) ≡ 1

re

∫ re

0
e−2αrh(r0− αrh)2r3

h drh

G(α, re, r0) ≡ re
∫ r0

re

e−2αrh(r0− αrh)2rh drh

or, in a more compact notation,

V̄eh = −(4π)2A2J (α, r0)

where

J (α, r0) ≡
∫ r0

0
e−2αre (r0− αre)2 {F(α, re)+G(α, re, r0)} r2

e dre.

A4. The energy functional

With the results of sections A1–A3, the energy functionalE(α, r0) can be constructed as

E(α, r0) = K̄i + K̄o + V̄eh + V̄c
in which the parameterβ can be replaced by its corresponding value in terms of the
parametersα andr0 (equation (6)).

Finally, as the reader must be aware, the integrals involved in the construction of
E(α, r0) can be reduced to the form of incomplete Gamma functions, i.e. integrals of the
form

γ (n, u) = 1

0(n)

∫ u

0
e−t tn−1 dt

or

0(n, u) = 0(n)− γ (n, u) =
∫ ∞
u

e−t tn−1 dt

which are well known and can be easily found in any table of integrals (see, for instance,
Gradshteyn and Ryzhik 1980).
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